放射光軟 X線照射による Si系非晶質半導体膜の

結晶化に光子エネルギーが与える影響

松尾	直人*1 · 部家	彰*1・天野	壮*2
宮本	修治*2・神田	一浩*2・望月	孝晏*2

Influence of Photon Energy on Crystallization of Si-Related Amorphous Film by SR Soft X-Ray

Naoto MATSUO^{*1}, Akira HEYA^{*1}, Shou AMANO^{*2}, Shuji MIYAMOTO^{*2}, Kazuhiro KANDA^{*2} and Takayasu MOCHIZUKI^{*2}

*1Dept. Materials Sci. & Chem., Univ. Hyogo, 2167 Shosha, Himeji-shi, Hyogo 671-2280, Japan

*2Lab. Advanced Science and Technology for Industry, Univ. Hyogo, 3-2-1 Koto, Kamigori-cho, Hyogo 678-1205, Japan

(Received August 23, 2013, Accepted February 3, 2014)

Low-temperature crystallization of Si, Ge and Si_xGe_{1-x} films by SR-soft x-ray irradiation using short undulator light is examined. By setting the photon energy to that of the core electron orbital, the crystallization is examined experimentally and discussed theoretically from a view point of Ge diffusion. The temperature during the crystallization of Si, Ge or Si_{0.5}Ge_{0.5} by soft x-ray was 80 to 140 degree C lower than that by the conventional rapid thermal annealing. The elementary process of the soft x-ray irradiation is thought to be the atom-diffusion following the localized excitation of the core-electrons and the generation of Coulomb repulsion. For the low-temperature crystallization, the quasi-nuclei are formed via the elementary process.

1. はじめに

非晶質シリコン (amorphous silicon: a-Si) 薄膜のレーザ 結晶化は、絶縁膜上に作製された金属/酸化膜/半導体電界効 果型トランジスター (MOSFET)¹⁾や薄膜トランジスタ (TFT)²⁻⁷⁾の活性領域,更には薄膜太陽電池(TFSC)の発 電層⁸⁾の作製方法として検討されてきた.しかし a-Si の溶 融・結晶化を伴う過程では、Si/ガラス界面はSiの融点 (1414℃) まで上昇し, 界面に SiN/SiO₂ 等の絶縁膜を設け てもガラスの転移点(例えばソーダガラスでは730℃)近傍 に上昇する.その為,ガラス基板に何等かの損傷を与える. 更に、プラスチック、繊維、紙等の柔軟基板では転移点が更 に下がり,溶融過程を伴うレーザ結晶化は不可能である.他 方, 放射光 (Synchrotron Radiation: SR) 硬 X 線を用い, 300 nm 厚さの a-Si 膜にウィグラー(wiggler)を光源とし て照射(光子エネルギーは4KeV)した結晶化の研究が行 われた⁹⁾. 硬X線照射後に600℃の炉加熱処理を入れる事に より無転位膜が得られた.このとき620℃の固相エピタキシ ャル膜は高転位密度となっており、硬X線照射が無転位膜 の形成に貢献している.なお,基板冷却状態での硬X線照 射中の温度は500℃であった.

我々は本学高度産業科学技術研究所に設置された放射光施 設ニュースバル(NewSUBARU)¹⁰⁾において,光子エネル ギーが100 eV~2 keVの領域にあり,輝度と吸収長が硬X 線より小さい SR 軟X線を用い,a-Si 膜の結晶化を試み た¹¹⁾.軟X線の様に侵入長が小さいと結晶核は表面近傍に 形成され,結晶化は表面から基板界面方向に進行すると考え

られるので、内部応力を低減できると予測した. a-Si 膜の結 晶化において、局所的に僅かに結晶化した様子を確認したの
 であるが,非晶質に近い膜であった.又,輝度が SR 軟 X 線より一桁大きいレーザ・プラズマ軟 X 線(Laser Plasma soft-Xay: LPX)¹²⁾を用いた処,LPX単独では結晶化できな かったが、エキシマ・レーザ・アニーリング (Excimer Laser Annealing: ELA) や赤外線急速加熱 (Rapid Thermal Annealing: RTA) 結晶化の前処理として用いると, ELA の 結晶化閾値エネルギー密度や RTA の結晶化閾値温度を下げ る事ができた¹³⁻¹⁵⁾. SR 軟 X 線照射による結晶化を実現する 為には光子密度,及び光子エネルギーを制御する事が重要で ある. そこで輝度が偏向磁石を光源とする場合よりも3~4 桁大きいアンジュレーター (short undulator) 光源を使用し て a-Si 膜, a-Ge 膜, a-Si_xGe_{1-x} に照射を行った.結晶化率 が60~80%になり、光子密度が結晶化に重要な影響を与え る事が判明した16-20). 但し,光子エネルギーが結晶化に与 える効果はまだ系統だった調査がない.

本論文の目的は、アンジュレーターを光源とする SR 軟 X 線を a-Si 膜, a-Ge 膜, a-Si_xGe_{1-x} 膜に照射し,結晶化率と 光子エネルギーの関係を検討する事である.更に、その結果 から結晶化機構を明らかにする事である.

2. 実験方法

使用した試料の構造は膜厚 50 nm の非晶質膜/(ソーダガ ラス,又は石英ガラス)基板である. a-Si 膜はプラズマ CVD (Plasma-Enhanced Chemical Vapor Deposition: PECVD)法により基板温度を 673 K に設定し,Si₂H₆ ソー スガスを用いてソーダガラス上に 50 nm 蒸着した. 膜厚は 接触法により測定した.蒸着速度は 0.2 nm/s である. a-Ge 膜, a-Si_{0.5}Ge_{0.5} 膜は分子線蒸着 (Molecular Beam Deposition: MBD)法により室温において石英ガラス上に 50 nm 蒸

^{*1} 兵庫県立大学大学院工学研究科 (〒671-2280 兵庫県姫路市書 写2167)

^{*2} 兵庫県立大学高度産業科学技術研究所(〒678-1205 兵庫県赤 穂郡上郡町光都3丁目1番2号)

着した. 蒸着速度と蒸着時圧力は各々 0.02 nm/s 及び 9× 10⁻⁷ Pa であった. 蒸着後, a-Ge 膜, a-Si_{0.5}Ge_{0.5} 膜は 623 K で真空アニールを600秒施した. この処理は膜の高密度化を 図る為に行ったもので, この有無で核形成のインキュベーシ ョン時間が異なる. Fig. 1 は軟 X 線照射を行ったニュース バルの長さ 2.28 m のアンジュレーターを光源とするビーム ライン (BL07A)を示す. 赤矢印がエンドステーションを 示し, 10⁻³ Pa の真空チャンバー内に試料表面と入射軟 X 線 が垂直になる様に配置した. 蓄積エネルギーは 1.0 GeV と した. 蓄積電流値 (照射時間)は,結晶化率と飽和温度の関 係を調べる実験において, Ge が 75 mA(0.67h), 100(0.5), 150(0.33), 220(0.23), Si が 175 mA(0.29h), 220(0.23), Si_{0.5}Ge_{0.5} が 125 mA(0.4h)であった. リングを周回する電子

流の値とその周回時間の積が基板へ照射された全光子量に比例すると考えられ、その値を一定(50 mA・h)にした.本 論文ではこの値を軟X線照射量と定義する.軟X線のビー ム寸法は7.5×7.5 mm²である.光子密度を大きくする為に 分光器の無い状態で照射を行った.

光子エネルギー変調実験では、光子エネルギーは2.28m アンジュレーターの磁石同士の距離により調節し、その値は Si, Geの内殻軌道電子エネルギーに近い値に設定した.光 子エネルギーを 50~130 eV で調整した際,光子密度の変化 は2倍以内の値に入っており,光子エネルギー依存性を検 討する事が可能と考えている.光子エネルギー115 eV は Si2p 軌道の 99.8 eV に対応し, 光子エネルギー 130 eV, 50 eVは, それぞれ, Ge3p 軌道の128.9 eV, Ge3d 軌道の 29.8 eV に対応する. 軟 X 線照射量は一定値 50 mA・h であ る. 先述の通り, 蓄積電流は試料に照射される軟 X 線の光 子密度に対応する.例えば,蓄積電流値220mAでは光子密 度は7.3×10¹⁴個/秒・mm²になる.照射中の温度はパイロ メータにより測定した.処理後の試料はラマン(Raman) 分光法により解析を行った. 波長 514.5 nm の Ar イオン レーザーにより, 室温でラマンスペクトルを得た. Si, Ge, Si_{0.5}Ge_{0.5}に関し、単結晶の横光学モード(transverse opti-

Fig. 1 Endstation of NewSUBARU BL07A (Arrow).

cal: TO) フォノンピークは各々 521 cm⁻¹, 282 cm⁻¹, 400 cm⁻¹であり,結晶化率は{単結晶層のピーク面積/(単結晶 層と非晶質層のピーク面積の和)}×100(%),により求めた.

光子吸収による内殻電子の遷移は時間的に変化する摂動を 考える. 遷移確率 $|C_f(t)|^2$ の計算は式(1)を用いた²¹⁾. t=0(初期状態)において内殻軌道上にあり,照射中のt=t(最 終状態)において真空準位に見出す確率と仮定した.

$$|C_{\rm f}(t)|^2 = \left(\frac{|H_{\rm fi}'|^2}{\hbar^2}\right) \left\{\frac{\sin^2\left[(\omega_{\rm fi} - \omega)t/2\right]}{\left[(\omega_{\rm fi} - \omega)/2\right]^2}\right\}$$
(1)

ここで、 $H_{\rm fi}'$ は摂動のハミルトニアン、 $|H_{\rm fi}'|$ は初期状態と 最終状態で決まる定数である.中心力の場に置かれた電子に 対する選択則は主量子数に対して制限はない. \hbar はディラッ ク定数である.以上から内殻軌道から真空準位への遷移確率 は $|C_{\rm f}(t)|^2\hbar^2/|H_{\rm fi}'|^2$ を計算した.

3. 実験結果と考察

3.1 a-Si_XGe_{1-X}(0≤X≤1)膜の結晶化率と光子エネル ギーの関係

Fig. 2 に軟 X 線照射後の Si, Ge, Si_{0.5}Ge_{0.5}のラマンスペ クトルを示す. 軟X線の光子エネルギー, 照射量は各々, 115 eV, 50 mA·h, 蓄積電流値は各々175 mA (Si), 75 mA (Ge), 125 mA (Si_{0.5}Ge_{0.5}) であり,結晶化を開始する 閾値電流値に対応する. Raman スペクトルから算出した照 射領域内の平均結晶化率は Si で72%, Ge で79%, Si_{0.5}Ge_{0.5} で60%となった. 更に, 照射領域中心の温度は, Si で580℃, Ge で420℃, Si_{0.5}Ge_{0.5} で620℃となった. 照射領域端部は中 心領域に比べ約50℃低温であった. Si では試料温度は照射 後約1分で飽和温度に到達し、以降は一定値を維持した. 結晶化率は数分の時差をおいてほぼ一定値に達するが、それ 以降もわずかながら結晶化は進行する. Fig. 3(a)には軟 X 線照射による結晶化率と飽和温度の関係を示す. RTA 結晶 化の時間は軟X線結晶化の閾値条件に於ける照射時間に等 しくなる様に設定している. その理由は RTA 結晶化の設定 温度への昇温時間は軟 X 線結晶化と殆ど同じである事,及 びRTA結晶化の温度は軟X線結晶化の閾値温度より高い 為, RTA 結晶化における設定時間が軟 X 線に比べ短い事は ないからである.軟X線結晶化をRTA結晶化(温度を点 線で示す)と比較すると、結晶化閾値温度は Si が680℃から 580°C, Ge が500°Cから420°C, Si_{0.5}Ge_{0.5}が625°Cから485°Cへ 低減しており、Si, Ge, Si_{0.5}Ge_{0.5}は80~140℃低温で結晶化 する事がわかる.

この原因として内殻軌道電子の寄与が考えられる. Fig. 3 (b)には Si, Ge 各軌道の吸収断面積のエネルギー依存性²²⁾を 示した. この実験における光子エネルギー(115 eV)は Si2p 軌道電子のエネルギーに近い事から, Si では 2p 軌道電 子の励起が大きいと考えられる. Ge では 3d 軌道電子の吸 収断面積が 3p 軌道電子よりも大きいので, 3d 軌道電子の励 起が主たる基礎過程と考えられる. 但し, Ge では Si に比べ て価電子への寄与も大きいと考えられる. その理由は, 価電 子励起を単純にボルツマン近似で考えると, Si と比べて Ge は価電子が 107 倍励起されやすく, 内殻電子励起による核形

Fig. 2 Raman spectrums of Si (a), Ge (b), and Si_{0.5}Ge_{0.5} (c) after soft x-ray irradiation. Positions 1 and 2 are the irradiation areas and 3 is non-irradiation area for (a) and (c), and positions 1–3 are the irradiation areas and 4 is non-irradiation area for (b).

成を助長し, Ge は Si よりも結晶化率が増加すると考えられ るからである. 蓄積電流値が 220 mA の試料で結晶粒径を XRD により評価したところ, Si, Ge, Si_{0.5}Ge_{0.5} 膜それぞれ 13.2-19.4, 22.5-31.9, 17-40.8 nm であった. TEM 観察の 結果も Si, Ge, Si_{0.5}Ge_{0.5} 膜それぞれについて15, 30, 30 nm であった. Si の結晶粒径は Ge, Si_{0.5}Ge_{0.5} 膜の凡そ半分であ る. Si_{0.5}Ge_{0.5} 膜の結晶化は最初に Ge 原子が核形成の為に移 動し始める事が推測される.

次に,軟X線照射結晶化における光子エネルギーと結晶 化率の関係を調べた.**Fig.4(a)**,(b)はGe膜,Si_{0.5}Ge_{0.5}膜 における各光子エネルギーでの結晶化率と光子数の関係,を 示す.照射量は50mA・hである.(a),(b)に示す様に,光 子エネルギーが3d軌道電子に対応する50eVの場合はGe, Si_{0.5}Ge_{0.5}各々で90%,60数%の結晶化率が得られたが,光 子エネルギーが3p軌道電子に対応する130eVの場合は, Ge,Si_{0.5}Ge_{0.5}の結晶化は生じなかった.光子エネルギーが 115eVでは,閾値となる光子密度以上では結晶化を生じ

Fig. 3 Relationship between the crystalline fraction and saturated temperature for crystallization (a) and cross sections of absorption for each core electrons and photon energy (b). The dashed lines are the threshold temperature for RTA crystallization and arrows show the difference of the threshold temperature between the soft x-ray and RTA crystallizations.

た.この現象は内殻電子の遷移確率,光子の吸収断面積を考 慮する必要がある. Fig. 4(c)は各軌道から真空準位への遷 移確率と光子エネルギーとの計算結果を示す. Ge では Ge3d 軌道から真空準位への励起確率は 50 eV の光子の方が 130 eV よりも2000倍大きい. 吸収断面積は Fig. 3(b)に示し た様に 50 eV と比較して 130 eV の方が約2.5倍大きいが, 光子エネルギー依存性は遷移確率が支配すると考えられる. 尚,Ge3p 軌道電子はGe3d 軌道電子に比べ,吸収断面積が 光子エネルギー 50 eV~130 eV において15倍以上小さく, 光子と Ge3d 軌道との相互作用が支配的と考えられる.以上 より, 光子エネルギー 50 eV においては光子と Ge3d 軌道電 子との相互作用が支配的となり、130 eV における結晶化と 大きな差を生じたと考えられる. 光子エネルギー115 eV で は、吸収断面積は50,130 eVの場合より少し大きくなる が, 遷移確率は 130 eV の場合より大きいが 50 eV より小さ い. この為,光子密度への依存性を生じると考えられる. Si0.5Ge0.5 では, Ge が担う核形成の支配的役割を Si が抑止 するために,結晶化率は小さくなり,臨界の光子密度も大き くなったのであろう. 更に, Si_{0.2}Ge_{0.8}, Si_{0.4}Ge_{0.6}, Si_{0.6}Ge_{0.4},

Fig. 4 Relationship between the crystalline fraction and the photon flux under each photon energy for Ge (a) and $Si_{0.5}Ge_{0.5}$ (b) films, calculated result of the transition probability from the core electron orbital to the vacuum level at each photon energy (c), and the relationship between the area of the crystallization region of $a-Si_XGe_{1-X}$ film and the fraction of Si or Ge (d). The transition probability is normalized at 50 eV of photon energy for (c).

及び Si_{0.8}Ge_{0.2}の結晶性もラマン測定により調べた.結晶化 率は各々, 85%, 65-81%, 29-35%, 0%であり, 軟X線 照射中の温度は545℃, 547℃, 541℃, 541℃であった.光 子エネルギー, 蓄積電流値, 及び, 照射量は, 各々, 50 eV, 100 mA, 50 mA・h であった. Ge 濃度が大きくなるに従 い,結晶化率は大きくなった.Ge原子の移動し易さが結晶 化率を支配するのであれば、結晶化面積にも影響がある事が 考えられる. Fig. 4(d)は各照射条件での a-Si_xGe_{1-x} 膜結晶 化面積と組成比率の関係を示す.光子エネルギー,蓄積電流 値が115 eV, 150 mA の場合も, 50 eV, 100 mA の場合と 同様に、Ge濃度が大きくなるに従って、結晶化面積が大き くなるという結果が得られた.光子エネルギー,蓄積電流値 が 115 eV, 100 mA の場合は Si_{0.2}Ge_{0.8}のみ結晶化し,他の 組成では結晶化しなかった. Si_{0.2}Ge_{0.8}の膜を115 eV, 150 mAの場合と比較すると、蓄積電流値が大きい方が結晶化面 積も大きくなった.即ち,照射される光子密度の増加に伴 い、結晶化面積も増加した.これらの結果もSixGe1-x 膜の 結晶化において, Ge 原子が核形成の支配的役割を担う事を 示唆する.尚,光子密度には臨界値が存在するが,これは次 節で説明する擬似結晶核を形成する Si イオンの量と密接な 関係を持つと考えられる.

3.2 軟X線結晶化の機構

レーザ結晶化では光子エネルギーが小さく,価電子帯の電 子が伝導帯に励起され,緩和過程において熱放出を行い,溶 融状態から,又は固相状態から結晶化を生じる.しかし,

硬・軟X線照射においては内殻電子を励起可能な程,光子 エネルギーは大きく,発生したフォノンの結晶化,厳密には 核形成への寄与を考慮する必要がある.光子の散乱断面積を Si 及び Ge に関し、内殻電子と価電子で比較すると内殻電子 の方がオーダー的な差をもって大きい値を示す²²⁾.これは 光子が内殻電子と相互作用する頻度が価電子よりはるかに大 きい事を意味する. 軟X線結晶化の一つのモデルとして以 下を提案する. Fig.5 は軟X線結晶化における, ギブス自 由エネルギーと粒径の関係を示す.出発状態は非晶質膜であ り、臨界半径に到達する自由エネルギーの増加があると、粒 成長過程に進み,結晶化を生じる.従来の結晶化では臨界半 径に到達する自由エネルギーの増加は熱により与えられる. しかし, 軟X線結晶化では結晶化温度が従来法よりも小さ く、この分が内殻電子励起による核形成過程で補償されると 考える事が合理的である. 現時点では内殻電子励起により クーロン斥力が局所的に発生し、原子移動を生じ、疑似核を 形成する、と考えている. クーロン斥力の起源は主として内 殻電子励起によるイオン化を考えているが,一部,価電子励 起によるイオン化も考えられる. 何れの過程を経るにせよ, 疑似核形成段階では原子移動を生じ、点線で囲んだ様なエン ブリヨ (embryo) の形成が考えられる.光子密度の臨界値 とはエンブリヨ形成に必要な Si+を作る光子密度と考える事 ができる.不安定位置から安定位置への原子移動を生じる事 により、不対結合対の数は減少する筈であり、電子スピン共 鳴法 (electron spin resonance: ESR)¹⁶⁾,又は,広域エネル

Fig. 5 Mechanism of the soft x-ray crystallization.

ギー損失微細構造 (extended energy-loss fine structure: EXELFS)²³⁾により観測されている.この疑似核形成過程を 仮定すると,隣接するエンブリヨの間にナノ空間が形成され る事になる.我々のエリプソメトリの屈折率測定¹⁶⁾で軟X 線照射領域の屈折率は小さくなる事が判明している.この結 果は本モデルのナノ空間形成を示唆すると考える事も可能で あるが,モデルの妥当性に関しては更なる調査が必要である.

ところで、従来の溶融・結晶化においては、自由エネル ギーのゆらぎにより液相中に形成された核が臨界半径以上で あるか以下であるかにより、粒成長過程に進む核と消滅する 核に分かれる.軟X線結晶化においては、固相状態での結 晶化である事から、自由エネルギー曲線上に準安定点が存在 するのではないかと考えられる.尚,本方法は原子のイオン 化が重要な素過程であり、内殻電子、あるいは価電子の何れ による励起でも同じ効果を得られれば同様の結果を生じる筈 である.軟X線照射では内殻電子の励起が顕著であったと いう事である. 例えば, 低エネルギー密度でのエキシマ・ レーザ結晶化においては、非溶融状態、即ち、固相状態で結 晶化を生じるが4), この場合は価電子励起により Si+が形成 され、その斥力により原子移動、核形成という過程を経ると 考えている. 又,内殻電子,あるいは価電子の何れの過程に おいても、核形成・結晶化は局所的に生じる事から斥力発生 と同時に生じる振動波が局所的に重なり大きなフォノンを生 じ,原子移動を生じるのであろう.

4. まとめ

SR 軟 X 線照射による非晶質 Si, Ge, Si_xGe_{1-x} 薄膜の結晶 化に関し,光子エネルギーと結晶化の関係を調べた.光子エ ネルギーを内殻電子の軌道エネルギー近傍に設定した場合の 結晶化に関し, Ge 原子に着目して実験・理論両面から議論 した.光子エネルギーが 50 eV において Ge, Si_{0.5}Ge_{0.5} 薄膜 の結晶化率は各々90,60数%であったが,130 eV では結晶 化しなかった.115 eV 以上では閾値となる光子密度以上で 結晶化を生じた.内殻軌道電子の真空準位への遷移確率と吸 収断面積を検討した処,光子と Ge3d 軌道電子との相互作用 が支配的であり,Ge 原子が核形成の支配的役割を担う事が わかった.光子による原子の内殻電子励起,それに続くイオ ンのクーロン斥力による原子移動が重要な素過程であると提案する. 軟X線結晶化の機構について,擬似結晶核の形成 を仮定すると,赤外線加熱よりも約100℃の低温結晶化を合 理的に説明できる.

謝辞

本研究の一部は文科省科研費基盤研究(#19560667) (#21560752),挑戦的萌芽研究(#23654204),及び,JST シーズ発掘試験(#11-130)の補助のもと進められた.a-Ge,Si_xGe_{1-x}膜のMBDによる薄膜作製は九州大学で行わ れた.都甲薫博士,佐道泰造准教授,宮尾正信教授のご好意 に感謝する.又,山口大学の河本直哉博士にはSi 膜のESR 解析を依頼した.ご好意に感謝する.

〔文 献〕

- R. A. Lemons, M. A. Bosch, A. H. Dayem, J. K. Grogan and P. M. Mankiewich: Appl. Phys. Lett., 40 (1982) 469.
- T. Sameshima, S. Usui and M. Sekiya: IEEE Electron Device Lett., EDL-7 (1986) 276.
- C. H. Oh, M. Ozawa and M. Matsumura: Jpn. J. Appl. Phys., 37 (1998) L492.
- N. Matsuo, Y. Aya, T. Kanamori, T. Nouda, H. Hamada and T. Miyoshi: Jpn. J. Appl. Phys., 39 (2000) 351.
- H. Hamada, H. Abe and Y. Miyai: Trans. IEICE, J84 (2001) 65.
- A. Hara, F. Takeuchi, M. Takei, K. Suga, K. Yoshino, M. Chida, Y. Sano and N. Sasaki: Jpn. J. Appl. Phys., 41 (2002) L311.
- A. Heya, N. Matsuo, T. Serikawa and N. Kawamoto: Jpn. J. Appl. Phys., 46 (2007) 7858.
- T. Noguchi, Y. Chen, T. Miyahira, J. D. Mugizanera, Y. Ogino, Y. Iida, E. Sahota and M. Terao: Jpn. J. Appl. Phys., 49 (2010) 03CA10-1.
- F. Sato, K. Goto and J. Chikawa: Jpn. J. Appl. Phys., 30 (1991) L205.
- A. Ando, S. Amano, S. Hashimoto, H. Kinoshita, S. Miyamoto, T. Mochizuki, M. Niibe, Y. Shoji, M. Terasawa, T. Watanabe and N. Kumagai: J. Synchrotron Rad., 5 (1998) 342.
- N. Matsuo, T. Mochizuki, S. Miyamoto, K. Kanda, N. Tanaka and N. Kawamoto: Digest of Technical Papers on International Workshop on Active-Matrix Liquid-Crystal Displays (AM– LCD2005), Kanazawa (2005) p. 293.
- 12) T. Mochizuki, A. Shimoura, S. Amano and S. Miyamoto: Proc. SPIE, 4504 (2001) 87.
- N. Matsuo, K. Uejukkoku, A. Heya, S. Amano, Y. Takanashi, S. Miyamoto and T. Mochizuki: Jpn. J. Appl. Phys., 46 (2007) L1061.
- 14) A. Heya, Y. Takanashi, S. Amano, N. Matsuo, S. Miyamoto and T. Mochizuki: Jpn. J. Appl. Phys., 48 (2009) 050208–1.
- 15) N. Matsuo, N. Isoda, A. Heya, S. Amano, S. Miyamoto, T. Mochizuki and N. Kawamoto: Materials Trans., 51 (2010) 1490.
- 16) N. Matsuo, Y. Takanashi, A. Heya and K. Kanda: J. Japan Inst. Met. Mater., 73 (2009) 708.
- 17) Y. Nonomura, A. Heya, K. Kanda, N. Matsuo, S. Miyamoto, S. Amano, T. Mochizuki, K. Toko, T. Sadoh and M. Miyao: *Proc.* 18th International Workshop on Active-MAtrix Flatpanel Displays and Devices, Kyoto (2011) p. 193.
- 18) S. Kino, Y. Nonomura, A. Heya, N. Matsuo, K. Kanda, S. Miyamoto, S. Amano, T. Mochizuki, K. Toko, T. Sadoh and M. Miyao: *Proc. 18th International Display Workshops*, Nagoya (2011) p. 659.
- A. Heya, K. Kanda, K. Toko, T. Sadoh, S. Amano, N. Matsuo, S. Miyamoto, M. Miyao and T. Mochizuki: Thin Solid Films, 534 (2013) 334.
- 20) A. Heya, N. Matsuo, T. Sadoh, K. Itoh, M. Takahashi and K.

Kanda: Appl. Phys. Exp., 6 (2013) 065501.

- 21) S. Koide: *Quantum Mechanics* (1), (Shokabo, Tokyo, 1990) [in Japanese].
- 22) J. J. Yeh and I. Lindau: Atomic Data and Nuclear Data Tables,

32 (1985) 1.

23) S. Muto, Y. Kobayashi, K. M. Yu, W. Walukiewicz, C. J. Echer, S. Mccormick and J. Abelson: Jpn. J. Appl. Phys., 37 (1998) 5890.